U DEANS
Data Structure and

Data Access Routine

H.Kroiss

IPP 2/288 Aug. 1987

MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

UDAS
Data Structure and

Data Access Routine

H.Kroiss

IPP 2/288 Aug. 1987

Die nachstebende Arbeit wurde im Rabmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europdischen Atomgemeinschafl iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.

Page 2

Introduoction

The UDAS data format was designed to have the following
properties:

The structure of a data file should, if possible,
— be simple and transparent

— contain all information required for complete
interpretation of this dataset

- be flexible to allow fast and simple implementation of
extensions and modifications

- avoid pointers, offsets, fixed type specifications,
fixed sequences and fixed-length structures whenever
possible, since such elements complicate the handling of
a dataset and, furthermore, restrict the possiblities of
the data acquisition system

- contain few different control block types and not
prescribe fixed definitions or lnterpretations of the
control blocks

- be organized in records to allow fast access. Each
record should only contain a single type of data in
order to faclilitate oconversion to other computer
systems.

It was largely possible to satisfy all of the above
requirements with the UDAS data format, mainly by means of the
character representation (ASCII) of the «control and
description blocks. The data format, which is composed of
only description and data blocks, thereby became very
straightforward and flexible.

The individual struoture oomponents are described in
detail in following sections.

Note

Only the structure of the data format is described,
not its interaction with the data acquisition.

s

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER

(o IS I RS S VS R R

NNNNNNNNNaa 2
N NN R R R RS R RV ES

QDD HFHH

Qo

S I

[0 S v

=

CONTENTS

' DEFINITIONS

GENERAL STRUCTURE

THE DIAGNOSTIC DATASET

Unit Access Block (UAB)
Function of the UAB
Structure of the UAB
Example of a UAB

LDBand UDB . .
The Level Descriptor Block (LDB)
The Unit Descriptor Block (UDB)
Structure of the LDB and UDB
Example of a LDB . Bl

The Data Blocks (DB)

THE EXPERIMENT DATASET

The structure of an Experiment Dataset
Meaning of UAB, LDB and UDB

DEFINITION OF THE FILENAME FOR DATASETS
FILE ORGANIZATION

UDAS DATA ACCESS ROUTINES

Overview . . .
Specification and call of funotions
Description of functions A
GETFIL . . .
OPENF and CLOSEF
SELECT .
GETDAT .
GETPAR
Examples of programs
Simple application
Complex application

CﬂCﬂCﬂCﬂCiﬂmCﬂCr'IClﬁl(‘lﬂ
IO OO0k

I adlinz |

|
OBRBRPOOPDORPH

CHAPTER 1

DEFINITIONS

The terms UNIT and LEVEL are used here as follows:

UNIT in this context denotes a logical unit of related
data or program options.
This may be, for example, a data acquisition unit, or else a
data reduction program or a oomplete diagnostioc. The
representation of a unit 1is always the same, only the
interpretation is different. As UNIT was defined in wholly
abstraot terms, 1t 1s possible to map highly different
structures on it.

The term LEVEL denotes the grouping of distinot units
into &a single higher-order data struoture. Each level, in
turn, may itself be a unit within a higher level. A level may
be visualized as a shell enclosing all data structures within
it. This recursive data organization provides the advantages
of compatibility of the access software at all levels, as well
as independence of the nesting depth.

The whole organization of the dataset is composed of Just
three different types of data blocks:

A. A Unit Access Block (UAB).

The UAB allows fast access to all information in a data
package. It is represented wholly in character format
(ASCII) and has a special status by virtue of its
function as an index. It 1s always the first block 1in a
dataset and is the only one to be organized in fixed
format. Only 1ts length is variable and is governed by
the number of units present.

B. The Level Descriptor Block (LDB) and
the Unit Descriptor Blocks (UDB).

Both descriptor blocks (LDB and UDB) are represented in
free character format (ASCII) and have exaoctly the same
organization. The only difference is the different
definition. ¥hile the LDB only contains the description
section of a whole 1level (e.g. of a diagnostic or
experiment), the UDB only stores information about a
single, relevant UNIT.

DEFINITIONS Page 1-2

C. The data bloocks (abbreviated to DB).

These contain the aotual data of the ocorresponding
level. At the diagnostic 1level it is the raw data or
reduced data, while at the experiment level it is whole
sets of diagnostic data that are meant.

The following primitive data types can be specified:

CHAR the data are of the CHARACTER type

BYTE the data are of the BYTE type

INT2 the data are of the INTEGER*2 type

INT4 the data are of the INTEGER*4 type

REAL the data are of the REAL type
Additionally, the following struotured data types are
defined:

MOD this refers to data of a unit

DIAG this refers to data of a diagnostic

EXP this refers to data of an experiment

CHAPTER 2

GENERAL STRUCTURE

The UDAS datafile has a tree-like structure. The Dbasic
pattern can be represented by the following diagrams:

a) Graphs

. =
M
)

)
H
>
(9]
-
o
H
>
(]
4V]
o
H
>
(]
=

.

=
O
o
-
=
O
O
fAv)
=
O
o
(&
=
O
o
N
=
O
o
@

| !
I\

b) Nested parentheses
(EXP(DIAG1(MOD1,MOD2),DIAG2(MOD3),DIAGN(MOD4,MOD5,MOD6, MODN)))

c) Level representation

EXP
DIAG1
MOD1
MOD2
DIAG2
MOD3
DIAGN
MOD4
MODS
MOD8

MODN

GENERAL STRUCTURE Page 2-2

The above representations are different forms of
representing the same structure. The ’'Graph’ representation
clearly illustrates the branching. Trees are normally drawn
from top to bottom and the top is generally the root. If an
element has no successor, then it is ocalled end element or
leaf. An element that is not an end element is always a node.

The root of a tree designated by definition is located on
level 1. The highest level of a tree is called its depth or
height. A further coriterion for a tree is the balance. Trees
are set to be balanced when the heights of the tree sections
for each node differs by one at most.

The number of branches or oonnections that have to be
traversed to the required node is reached from the root is
called the path length of the required node. The root has the
path length 1.

For structuring the UDAS datafile uses a tree with a
degree ¢greater than 2, a so-called balanced "Multipath tree".
The path length depends directly on the level of the required
node.

This structure proves to be partiocularly efficient since
in most cases the files are stored on magnetic disks and the
addresses of several elements located on the same level can be
read 1n one disk access. Compared with a binary tree with
several disk accesses, there can be a considerable saving in
latency time.

CHAPTER 3

THE DIAGNOSTIC DATASET

A diagnostic dataset represents the smallest unit of a
data package and is oomposed of a unit acocess block (UAB),
followed by a level desoriptor blook (LDB) and one to n
combinations of unit desoriptor blocks (UDB’'s) with data
blocks (DB’'s). The number n here is governed by the number of
UNITS available.

Figure 1 shows the structure of a diagnostic dataset

5 o

Ve Unit Descriptor Block
i e s i i Data Block
_____________________ Level Desciptor Block

R b ot Unit Access Block

rig. 1 Organization of a Diagnostic dataset

THE DIAGNOSTIC DATASET Page 3-2

3.1 Unit Access Block (UAB)
3.1.1 Function of the UAB

The primary function of the unit acoess block is fast
access to data packages within the dataset. Furthermore, it
fulfils to a certain extend the funotion of an index and
serves as an information basis for the particular dataset.

For these reasons and in order to ensure the integrity of
the datasets for there entire lifetime, the UAB was build in a
fixed (and invariable) format. It is thus sufficient just to
read out the UABs to identify the particular structure of a
dataset. The unit access block is the only element in the
data struocture to have a rigid format, but the sequence and
number of entries has remained variable.
The following peculiarities of UABs should be noted:
- the UAB always stands at the beginning of a dataset

- the format of a UAB entry is fixed (see 3.1.2) and the
length is always exaotly 64 charaocters.

- the first 1line of a UAB (64 ocharacters) contains
information on the organization of the dataset

- all entries following contain information on the UNITS
present.

- the remaining space up to a record limit is filled with
blanks.

For this dataset 1level the unit access block of a
diagnostic constitutes the root and for superordinate levels
it is the node.

The UAB contains the following information:
a) the name of the diagnostic
b) the size of a record in bytes
c) the total length of the dataset in bytes
-d) the type of the dataset (DIAG)

e) the pointer to the LDB (Level Descriptor Blook),
i.e. the description section for the DIAG level

f) the length of the LDB in bytes

THE DIAGNOSTIC DATASET Page 3-3

and for all UNITS involved :

a) the
b) the
c) the
d) the

e) the

s I

f) the

name of the UNIT

pointer to the first data blook
number of data points

data type, e.g. REAL

pointer to the UDB (Unit Descriptor Block),
the description seotion for this UNIT

length of the UDB 1in bytes

THE DIAGNOSTIC DATASET Page 3-4

3.1.2 Structure of the UAB

Unit Access Block (fixed format)
BOLOMETER. . . vt vttt v v ee eee s 5127680 DIAG SRS - 128
'—— Level Name Rec. Size - : : Size of LDB
(1-22) (24-31) 3 : : (56-83)
first Record
'— Number LDB
: (47-54)
Total Data -——————- 2 .
(33-40) ‘-——— Level Type
(42-45)
THERMO-ELEMENT.cvv veeuwen. 4 ,...1280 INT2 O L 343
‘-—— Unit Name first DB Record : : : Size of UDB
(1-22) (24-31) : : : (56-63)
first Record
‘- Number LDB
: (47-54)
Total Data Items -———————— f :
(33-40) '-——— Data Type
(42-45)
PHAG cony os ot i 5.8 sbuvss on it B 101280 INT2 18 .. 322
‘'-—— Unit Name first DB Record : : : Size of UDB
(1-22) (24-31) : : : (56-63)
: first Record
‘'~ Number LDB
(47-54)

Total Data Items - ———————- ! :
(33-40) '———- Data Type
(42-45)

THE DIAGNOSTIC DATASET Page 3-5

3.1.3 Example of a UAB

| BOLOMETER 512 7168 DIAG] 128
| THERMO-ELEMENT 4 1280 INT2 9 343
| PHA 10 512 REAL 14 322

This UAB contains the following information:

This is a diagnostic dataset (DIAG) with the name
'BOLOMETER ' . The dataset is organized in 512 byte records
and ocontains &a total of 7168 bytes of data. The
desoription section of this diagnostioc (LDB) begins with
record 3 and contains 128 characters.

In addition, there are two entries for UNITS available.
The first unit has the name ’'THERMO-ELEMENT', whose data
block begins with record 4 and has a length of 1280 data
points of +type 'INT2', a.e. 2560 bytes. The description
section of the ‘'THERMOELEMENT' unit is found at record ©
and consists of 343 characters.

The second unit ‘PHA’, can be interpreted by analogy with

the unit ‘'THERMO-ELEMENT'.
The rest of the UAB is filled up with blanks.

3.2 LDBand UDB
3.2.1 The Level Descriptor Block (LDB)

The level desoriptor block (LDB) contains all information
and parameters concerning the entire 1level (here:
diagnostic). By virtue of this superordinate role the LDB 1is
placed immediatly after the unit access block.

In each LDB the following parameters are to be found:
— the name of the level (here: of the diagnostio)
- the name of the dataset and the shotnumber
- the type of the dataset (here: DIAG)

- the date of generation of the dataset (date, time of
day)

Note: Each dataset can only have one UAB and one LDB per level

THE DIAGNOSTIC DATASET Page 3-6

3.2.2 The Unit Descoriptor Block (UDB)

The unit desoriptor block contains all information and
parameters concerning a special UNIT. This inocludes
essentially parameters which govern the funoction oycle of the
UNIT. The parameters contained in a UDB are grouped in

- a system section, which 1is governed by the data
acquisition program,

- & UNIT seoction, which reproduces the function oyole of a
UNIT (here: unit driver)

- and a user section, which is set up by the user.

The composition and structure of these parameters is of
no consequence in +this context and is desoribed elsewhere
(UDAS Data Acquisition System).

3.2.3 Structure of the LDB and UDB

The structures of the level descoriptor block and the unit
descoriptor block are completely identical. Both are designed
in free character format (ASCII) and are unrestricted as
regards length, sequence and type of parameters. The
following syntactical rules should be observed:

- A LDB or UDB always starts with the name of the level or
the unit.

- A parameter name is separated from its value (or its
values) by at least a ‘blank’ or ‘TAB’. The same
applies to the separation of multiple parameter values.

- A parameter (name and value) is always terminated with a
«CR> (Carriage return), a.e. a <«CR> is always followed
directly by the name of a parameter or ‘blank’ (end).

All parameters, inoluding those "invented" by the user,
can always be read again under the c¢chosen name for data
analysis. By this method it is possible without additional
masks or alds to analyse the dataset with the relevant
parameters without diffioculty from the first to the last shot.

THE DIAGNOSTIC DATASET Page 3-7
3.2.4 Example of a LDB

Content of a Level Desoriptor Block (L D B)

Count Parameter Meaning

000000 LASER<CR> | Level Name

000006 Data-Set DNOOOOO2.LASER 2:CR> | Dataset (Name,Number)
000034 Date-Time 24-MAY-84 12:34<CR> | Generation Date
000082 Level-Type DIAG<CR> | Dataset Type

000080 USER 'Dr. Maier’<«CR> | User

000098 System ‘VAX1ll-1'<CR> | Name of Subsystem
000116

000512

Note: <«CR> means "Carriage Return"

3.3 The Data Blocks (DB)

A data block contalns all data of a UNIT and has by
definition a definitely allocated data type (a.e. REAL).
This means that all data of +this UNIT, for example, are
interpreted as REAL values. A data point thus consists of 4
bytes.

A data block (DB) is always combined with & UDB, which
has all the necessary additional information availlable.
In principal, it 1is possible that the data block is
non-existent, 1i.e. its pointer is zero, while the UDB (at
least the UNIT name) always has to be present. This ocase
arises, for example, when a unit, which produces no data
requires control parameters.

A data block 1s physically organized in records which

must all have the same data type. This allows the data to be
converted relatively simply into other computer
representations.
The admissible data types have already been defined wunder
point 1.C. Aslide from these data types, user-defined data
types can also be selected (e.g. "BCD"). In this ocase, one
byte is taken as the basic unit of data, and the
interpretation of the data is left to the user’'s data analysis
program.

CHAPTER 4

THE EXPERIMENT DATASET

An experiment dataset 1s ocomposed of the individual
diagnostic datasets in form of a shell.

What has been said about the diagnostic datasets (chapter
3) 1is also basically valid for an experiment dataset. Only
the differences in interpretation are therefore discussed in
the following.

Figure 2 shows the shell-shaped organization of an experiment
dataset.

AT | SR B — S e B e e . RS e
! =+ PRl St Gt =Rt o1 ! lsfm=dfgh
B T i T R B L8 Y L i) U D L i tid IR0 S B LN) o 5 b Liged LN

! IFRECY [FHEP ARESR DX ECL 5B - PR ET VDS FREA 1S
- Ol O A - B B R T R - B e A e T - & LI -5

! Folesi b 18 T8 Bt ! 1)} 11 =1

! e, 1 -1 PepapEpPo) i) A MY LD Pr-bnp |

l E ! ! l 1 L L} -_:_l‘ v LK A3 8 L1 _f l l l l___l __
l l L\ [. [1

‘- UDB (DIAG-1)
‘- UDB (DIAG-1, MOD-1)
‘-——— DATA (DIAG-1, MOD-1)
‘-~ Level Descriptor Block (DIAG-1)
S_.ghenrls Unit Access Block (DIAG-1)
ghds _ox _Jrpnge Level Desciptor Block (EXP)

iy B e S BICA —~ DOl S Unit Access Bloock, (EXP)

Figure 2 Organization of an Experiment Dataset

THE EXPERIMENT DATASET Page 4-2

4.1 The structure of an Experiment Dataset

Each experiment dataset has as "EXP" node a UAB (unit
access block), which also represents the root of the entire
dataset. All UAB’'s have a fixed format and afford acocess to
the nodes of the next level. The access scheme is shown in
the following representation.

!

! U A B YSE X P &

|

! Unit Access Block Experiment "W7AS"

|
v v v v v
L DB "EXP" !

!
! Level |
| Descriptor Blockl!

U A B reD. L. A G ¥ UAB"DIAGRG

Unit Access Block Diagnostik "Bolometer" Diagnostik "XY

- e e e b b
.
- bmm bmm b b S

1< B D=B=~ SDITAGY . |
! Level l
| Descriptor Blockl!

| UDB | ! I"U DB |
! *PHA? ! ! ! "XYz" !
| Unit | DATA ! | Unit | DATA
| Descriptor ! | | Descriptor !
! Block ! ! | Block !

THE EXPERIMENT DATASET Page 4-3

4.2 Meaning of UAB, LDB and UDB
The unit access block of the experiment dataset has the

same struoture as a diagnostic UAB. The information, however,
is differently interpreted (o.f. see 3.1.1).
The content of the UAB is as follows:

a) name of experiment

b) size of a record in bytes

c) total length of dataset in bytes

d) type of dataset (EXP)

e) pointer to the LDB (Level Descriptor Block),
a&.e. the descoription section for the "EXP" level

f) length of the LDB in bytes
and for all UNITS involved (here: diagnostios):

a) UNIT (Diagnostic) name

b) pointer to the UAB of the diagnostio

o) number of data of the diagnostic in bytes

d) data type "DIAG"

e) pointer to the UDB (Unit Desoriptor Block),
a.e. the desoription section of the data acquisition
for this diagnostic dataset

f£) length of the UDB in bytes

Reading this 'EXP’' unit access block now affords a quiock
overview of the structure of the datafile and the diagnostiocs
involved.

The next node (UAB diagnostio), which is the root of a
diagnostic dataset, provides detailed information on the
particular diagnostio.

The 1level desoriptor block (LDB) of an experiment
datasets oontains all parameters and information concerning
the entire experiment.

THE EXPERIMENT DATASET Page 4-4

On the "EXP" 1level UNITS are defined as complete
diagnostic datasets. The UDB's of an experiment dataset thus
contain all parameters and information which are applicable
for data acquisition of a diagnostio dataset, a.e. from which

subsystem the data ocame, whether +they were subsequnently
attached, etc.

The data blocks (DB’'s) of an experiment dataset are
always of the data type "DIAG", a.e. they contain the data of
a complete diagnostic, the diagnostic dataset.

Data of type "DIAG" can be interpreted and treated with the
structure model of a diagnostic dataset.

CHAPTER 5
DEFINITION OF THE FILENAME FOR DATASETS

All datasets are of the same structure and ocan be be
distinguished by the so-called oclassification letters. The
classification letters always stand at the beginning of a file
name.

The oclassification letters are followed in in file name by a
6-digit number, which corresponds to the respective shot
number.

The file extension (VAX) or the file type (IBM) is formed by
the first 10 letters of the particular level name.

The name of an UDAS dataset thus oconsists of three
components:

1. two classification letters
2. & 6-digit shot number
3. the level name (1 to 10 characters)

The two olassification letters are to allow simple
classification of the dataset. The first letter denotes the
level of the dataset (a.e. whether it is a unit, diagnostic
or experiment dataset):

E --> Experiment
D --> Diagnostioc

M —-> Unit (module)

DEFINITION OF THE FILENAME FOR DATASETS Page 5-2

The second letter is for allowing pre-analysing of the
dataset. The following letters are predefined:

levels.

o

o]

N
0
P
R

T

normal rawdata
output data

compressed data
reference data

test data

A-M freely selectable qualification

¥ith the qualification 1letter it is possible, for
example, to produce datasets with different data analysis

The general structure of a data file name is thus as

follows:

LLinnanann.. L(1)..51610)

!

Note:

|

diagnostic
——————————————— Separator (only VAX/VMS)
—————————————————————— 6-digit shot number
——————————————————————————— Classification letter

|
! Ve Name of the experiment or
!

——————————————————————————————— Letter for denoting

the level

'L’ means letter, ‘n’ means number

Examples:

ENOOOOO1.W7AS

Experiment W7AS, shot number 1
Classification: normal rawdata

DTO00002 . BOLOMETER Diagnostic Bolometer, shot number 1

Classification: test data

MEOOO999. THERMOELEM Unit Thermoelement,

Shot number 999999
Classification: compressed data

DEFINITION OF THE FILENAME FOR DATASETS Page 5-3

The contents of a diagnostic datafile can be added to the
experiment datafile with the same shot number. The unit
datafiles can likewise be incorporated in diagnostic datafiles
(with the same shot number).

The individual diagnostic datafiles can readily De
reconstructed (a.e. extracted) from the experiment datafile
because the file names are stored in the LDB's of the
diagnostic datasets.

CHAPTER 6

FILE ORGANIZATION

The size of the record of a datafile is 512 bytes and
corresponds to a physical record of +the PDP1l1/VAX1ll file
system. The size of the record in the UDAS data structure
could vary (see point 3.1.1 "Record Length"), which, however,
- would certalnly lead to complications in many programs. This
possibility should only be taken in consideration if the size
selected should prove to be unfavourable.

Writing and reading are done by "direot file access".
Each datafile record ocontains only data of the same type
(INTEGER*2, REAL, CHARACTER, BYTE...). By means of this
condition conversion of the datafile to other computer systems
is simplified.

Figure 3 shows the record-wise organization of a datafile

| 512 Byte Record 1 CHARACTER 'CHAR’ |
| Bl2 Byte Record

| 8512 Byte Record

h O D
H
=
H
=
o
L
=
w
»*
L)
H
=
H
o]

| 512 Byte Record

512 Byte Record n-1 REAL_ ‘REAL’

| 512 Byte Record n CHARACTER 'CHAR’ |

Figure 3 File Organization

FILE ORGANIZATION Page 6-2

In Interpreting the pointers to the unit access blocks
(UAB's) 1its to be noted that the record pointers (which allow
direot access) always refer just to their relevant dataset,
1.6 the record pointers are to be regarded as relative
quantities.

Example:

In the case of an experiment datafile the start of a
diagnostic dataset is indicated in UAB by the record
number n. In the diagnostic UAB found as of record number
n the number m aots as record pointer to the data of a

unit.
In order to access the data of this unit in ‘random
acoess’, the record now has to be selected with the

absolute number (n+m-1).

This ‘relative’ organization has proved to be
advantageous because the dataset of one 1level can be
transferred untouched (i.e. without recomputing the record
pointers) to a dataset on a higher level, and re-extracted
later.

CHAPTER 7

UDAS DATA ACCESS ROUTINES

7.1 Overview

The UDAS data files are accessed by means of subroutines (in
FORTRAN 77) allowing simple access to the file data and
parameters. These routines can be used without modifications
to access both diagnostic and experiment data files.

Error handling has been redesigned in relation to
previous data access routines. Each function use as result a
success/error message in plain text of the data type
CHARACTER*80.

The first character of this message indicates if a success,
warning or error message is meant. The following
specifications are made:

first character s Success

first character = '-' Warning
first character = '*’ Error

7.2 Specification and call of functions

To allow the functions be used in the analysis program, they
have to be specified as follows:

CHARACTER*80 GETFIL, OPENF, CLOSEF,

1 SELECT, GETDAT, GETPAR
CHARACTER*80 RESULT

The RESULT variable serves for filing the result of the
function.

The funotion call then reads , for example,

RESULT = CLOSEF ()

UDAS DATA ACCESS ROUTINES Page 7-2

7.3 Description of funoctions
7.3.1 GETFIL

A) Desoription:

The GETFIL funotion is only required in VAX/VMS systems in
order to affect synchronization and communication with the
‘CP’' data acquisition program.

After data has been written to the file the UDAS data
acquisition system affords the possibility of automatically
starting analysis programs. For +this purpose it is
necessary to communicate to the analysis program the name

of the current shot, which can then be immediately used to
. open the file.

B) Parameters:

Parameter | Type l Meaning

FNAME CHARACTER*80 name of ourrent data file
(output)

SHOTNR INTEGER current shotnumber
(output)

C) Definition of function:

CHARACTER*80 FUNCTION GETFIL (FNAME, SHOTNR)

D) Remarks:
The oalling of GETFIL is optional (exeption: data
reduction programs). It 1is recommended, however, that

GETFIL be incorporated in new brograms as a precaution in
order to allow automatic program start - if desired at any
later time. Furthermore, it should be noted that, owing to
its built-in synchronizing function, GETFIL

l. has to be called before all other access routines
2. and may only be called once. :

E) Error messages:

A VWARNING is 4issued if the analysis program is not
automatiocally started by the data acquisition. In this
case the two parameters of GETFIL are irrelevant and the
analysis program has itself to define or read in the
desired data file name. _
This case always ocours when the user starts the analysis
program with 'RUN program’.

UDAS DATA ACCESS ROUTINES Page 7-3

F) Example of call:
CHARACTER*80 FNAME
INTEGER SHOTNR

RESULT = GETFIL (FNAME, SHOTNR)
IF (RESULT(1:1).EQ.'-') TYPE *, 'No automatic mode’

UDAS DATA ACCESS ROUTINES Page 7-4

7.3.2 OPENF and CLOSEF

A) Description:

B)

c)

D)

The OPENF and CLOSEF routines are available for
opening and closing the data file.

To read from a data file, the first essential
requirement is to open the file.

Before terminating the program and opening a further data
file with OPENF, it is necessary to close the previously
opened file with CLOSEF.

Parameters:
for OPENF:
Parameter | Type ! Meaning
FNAME CHARACTER*80 name of data file to be opened
(input)
LUNIT INTEGER logical unit number is required,
(input) to avoid any conflict with other

files present in the program

for CLOSEF: none

Definition of function:
CHARACTER*80 'FUNCTION OPENF (FNAME, LUNIT)
CHARACTER*80 FUNCTION CLOSEF ()

Remarks:

While a program is running, only one data file may be open
at any time !

When CLOSEF is called, it is no longer necessary to specify
the filename and the logical unit number since only one
data file ocan be open.

UDAS DATA ACCESS ROUTINES Page 7-5
E) Error messages:

A FATAL error occours if the data file ocould not Dbe

properly opened. In this case all the other data acess
routines cannot be used. (They yield the fatal error 'File
not open’). Check to see whether the filename 1is

completely and correctly written and whether the stated
data file is indeed present.

If a data file is already opened and has not been
closed, OPENF issues a warning and closes the opened data
file before the new data file is opened.

F) Example of call:
INTEGER LUN
LUN = &
RESULT = OPENF('DNOOO0OQO1.BOLOMETER’, LUN)

RESULT = CLOSEF()

UDAS DATA ACCESS ROUTINES Page 7-6

7.3.3 SELECT

A) Description:

In preparation for the GETDAT and GETPAR routines it
must Dbe established from which diagnostic or module the
data are to be fetched. This 1s done with the SELECT
routine.

The SELECT function must be used before the first call
to GETDAT or GETPAR, but can then be used any number of
times between OPENF and CLOSEF.

Specifying a diagnostic name and a module name

. establishes from which diagnostic and module GETDAT and

B)

C)

D)

GETPAR derive the data. The selection of the diagnostic
and module made by SELECT remains valid for GETDAT and
GETPAR ocalls until diagnostic and/or module is redefined by
a new SELECT call.

Access to the experiment parameters is always
possible, regardless of which diagnostic and module has
just been selected.

Parameters:
Parameter | Type ! Meaning
DIAGN CHARACTER*22 name of diagnostic
(input)
MODN CHARACTER*22 name of module
(input)
Definition of function:

CHARACTER*80 FUNCTION SELECT (DIAGN, MODN)

Remarks:

Between a successfull SELECT ocall with, for example, a
Diagnostic-A and Module-1 and the next SELECT call it is
possible to access

the parameters of the experiment
the parameters of ’'Diagnostic-A’
the parameters of 'Module-1' and
the data of 'Module-1'

UDAS DATA ACCESS ROUTINES Page 7-7

E) Error messages:
A FATAL error ocours

1. 1f the data file is not opened

2. 1f no diagnostic or module name is specified

3. 1if, in the case of a diagnostic data file, parameter
DIAGN does not agree with the name of the diagnostic in
the data file.

In the event of a FATAL error all subsequent calls to
GETPAR and GETDAT return the error message 'No unit
selected’.

A WARNING is issued

1. 1if, in the ocase of an experiment data file, the
specified diagnostic, and hence the module as well,
could not be found.

2. 1f the specified module could not be found within the
diagnostioc.

If a WARNING is issued, all following GETPAR calls can
access the experiment parameters of an experiment data file
and - insofar as the diagnostic ocould be found - +the
diagnostic parameters as well.

The data and parameters of a module cannot be read.

F) Example of call:

RESULT = SELECT ('Diagnostic-A’, ’'Module-1')

T eE———————

UDAS DATA A

CCESS ROUTINES Page 7-8

7.3.4 GETDAT

A) Desoript

ion:

The GETDAT routine is used for actual data access.

GETDAT may be used between OPENF and CLOSEF any number
of times. The first GETDAT ocall must, however, be
preceeded by a SELECT ocall.

B) Paramete
required
Parame
BUFFER
DSTART

DATREQ

optional:

DATEND

DATRET

DFORM

C) Definiti

D) Remarks:

The firs
call, wh
one of

paramete
a.e. 1if

T8

ter | Type ! Meaning
Array the type of BUFFER must agree
(output) with the data type
INTEGER starting location of data
(input)
INTEGER number of data points requested
(input)
INTEGER end location of data supplied
(output)
INTEGER number of datapoints actually -
(output) supplied
CHARACTER*4 expected format of data
(input) ¢'REAL‘; 'INT2’', 'INT4’', ‘CHAR’,

'BYTE’)

on of funoction:

CHARACTER*80 FUNCTION GETDAT
(BUFFER, DSTART, DATREQ, DATEND, DATRET, DFORM)

t three parameters are essential for every GETDAT
ereas the other three are optional. But as soon as
these optional parameters is specified, all
rs8 to the left of it have to be included as well,
GETDAT is called whith a parameter for DATRET, the

DATEND parameter may not be omitted.

The DATE

data Dby

ND parameter facilitates complete reading of the
using DATEND+1 as DSTART input for the particular

GETDAT call following.

UDAS DATA ACCESS ROUTINES Page 7-9

To avoid an abnormal end of program, it should be insured

when calling GETDAT

1. that the specified buffer is large enough to take the
data requested and

2. that its type agrees with the type of data.

If there are doubts oconcerning the type of data involved,
the optional DFORM parameter should be used. DFORM can
take as value one of the usual abbreviations for denoting
type of data ('REAL’, 'INT2', 'INT4’', 'CHAR', 'BYTE', etoc.)
and sould inform the GETDAT routine what type of data 1is
expected (a.e. how BUFFER is defined). If the data type
and buffer type do not agree, an error message is issued,
but no data are transfered.

The buffer type must be defined accordingly for the data

types REAL, INT4, INT2 and CHAR.
The size of the buffer can be arbitrarily selected.

For example:

REAL BUFFER(1000) for REAL data
INTEGER*4 BUFFER(400) for INT4 data
INTEGER*2 BUFFER(256) for INT2 data
CHARACTER*1 BUFFER(512) a.e.

CHARACTER*512 BUFFER for CHAR data

A datapoint here corresponds to a REAL number, an INTEGER*4
number, an INTEGER*2 number, or a CHARACTER*1.

For all other types of data (BYTE,...) BUFFER has to Dbe
defined as an array of LOGICAL*1 values, for example:

LOGICAL*1 BUFFER(400)

In this case a datapoint denotes one byte.

UDAS DATA ACCESS ROUTINES Page 7-10

E) Error messages:

A FATAL error occurs

1A
2.
3

4.

if fewer than the first three parameters are specified,
i1f the data file has not been opened with OPENF,

if there has previously been no proper SELECT call to
choose then module from which the data are to be read,
if the datatype does not agree with the DFORM
parameter.

A WARNING is issued

1.

2.

o8

if no data from the module selected are available in
the data file,

if no data are available at the specified starting
location,

if more data are requested than are present.

F) Example of call:

INTEGER*2 BUFFER(500)

INTEGER DSTART, DATREQ, DATEND, DATRET
DSTART = 1

DATREQ = 500

RESULT = GETDAT(BUFFER, DSTART, DATREQ,

1 DATEND, DATRET, 'INT2')

UDAS DATA ACCESS ROUTINES Page 7-11

7.3.5 GETPAR

A) Description:

The GETPAR routine allows simple access to the parameters
of the experiment, of the dlagnostic, or of a module.

Like GETDAT, GETPAR may also be used between OPENF and

CLOSEF any number of times after (at least) one SELECT
call.

With one GETPAR call it is ©possible to obtain the
values of up to eight parameters all at onoce.

B) Parameters:

Parameter ! Type | Meaning
UNIT CHARACTER*4 selects what kind of parameter
(input) is to be read
'EXP ' for experiment parameter
'DIAG’ for diagnostic parameter
‘'MOD ' for module parameter
PNAMEX CHARACTER*22 name of parameter
(input)
PBUFx record the type of PBUFx is dependend
(output) on the type of parameter buffer

for the value of the parameter

C) Definition of function:

CHARACTER*80 FUNCTION GETPAR (UNIT,
PNAME1l, PBUF1,
PNAME2, PBUFR,
PNAME3, PBUFS3,
PNAME4, PBUF4,
PNAME5S, PBUFS,
PNAME6, PBUFG6,
PNAME?, PBUF7,
PNAME8, PBUF8)

= Ll

UDAS DATA ACCESS ROUTINES Page 7-12

D) Remarks:

GETPAR has to be called with an odd number of arguments (at
least three).

The specification for UNIT may under no oircumstances
be omitted. For every parameter required it is first
necessary to specify its mname and then +the appropriate
buffer which is to hold the value.

The UNIT argument establishes whether the following
parameter names involve experiment, diagnostic, or module
parameters:

UNIT = 'EXP ' experiment parameter
UNIT = 'DIAG’' diagnostic parameter
UNIT = 'MOD ' module parameter

PNAMEx must contain +the name of the parameter
required, beginning with the leftmost character. An
unambigous abbreviation of parameter names is allowed, Dbut
not recommended (for reasons of effioiency).

PBUFx is a variable of a type corresponding to the type of
the parameter value. The following types are possible:

REAL

INTEGER

CHARACTER

and ARRAYS of these types.

[S

If a paramater has several values of the CHARACTER type,
these are seperated by a BLANK and written in succession
into the character buffer provided for the parameter.

If a parameter should have several values of different
types, the relevant Dbuffer must first be defined as an
array of LOGICAL*1l values. An EQUIVALENCE statement may
then be used to define specific offsets as variables of the
desired data type. In this case GETPAR first writes all
REAL values, then all INTEGER values and finally all
CHARACTER values into the buffer (see definition of
parameter "Conversion" in example pp. 17-18). Each REAL
or INTEGER value requires 4 bytes; each letter of a
character string 1 byte of storage space.

Caution: If the types of the parameter values in the
buffer do not agree, this can lead to abnormal end of the
program ||

UDAS DATA ACCESS ROUTINES Page 7-13

E) Error messages:

F)

A FATAL error ocours

s

b D

if an even number of arguments or fewer than three are
specified.

if UNIT does not have one of the values 'EXP’, 'DIAG’
or 'MOD’.

if there has prevously been no proper SELECT ocall,

if experiment parameters are requested, although the
data file concerned is a diagnostic file.

A WARNING is 1ssued if one or more of the named parameters
oould not be found.

Example of ocall

INTEGER DATCNT

REAL FACT(8)

RESULT = GETPAR ('MOD ',
1 'Data—-Count’, DATCNT,
1 ‘Faoctors’, FACT)

Further GETPAR ocalls are explained in the second example
program.

UDAS DATA ACCESS ROUTINES Page 7-14

7.4 Examples of programs

7.4.1

aaaa

QaQ aaaaaaoaaaaa

Qaaaaaaaaan

Simple application

Simple example of a program for the appliocation
of the UDAS data analysis routines

PROGRAM SIMPLE

tttt**tttt**#t*tt!**‘tttttttt**tt!*tl*#tt*ttt**#**lt*tt

The SIMPLE program is used for reading the first 1000
datapoints for the 'LASER’ diagnostic and the 'ADC-Fast'’
module from the ’‘ENOOO001.W7AS’ experiment file.

In addition, the parameters ’‘Data-Count’, ‘Channels’,

‘Gain’ and 'Note’ are needed for analysis.
tt****t##*******tttt**tttt***t**ttt**tttttt***t**tttt*t

Specification of the functions and result message
CHARACTER*80 OPENF, SELECT, GETPAR, GETDAT,CLOSEF
CHARACTER*80 RESULT

Specifications for the parameters

The ‘Channels’ und ‘Data-Count’ parameters are INTEGER
values in the Configuration file, and therefore buffer
for them have also to be defined as INTEGERS.

For the REAL value of the ’‘Gain’ parameter the REAL
buffer GAIN is specified, and for the CHARACTER value
of 'Note’ the CHARACTER*40 buffer NOTE is specified.

INTEGER CHAN, DATCNT
REAL GAIN
CHARACTER*40 NOTE

Specification of the buffer for GETDAT

INTEGER*2 I2BUF(1000)

UDAS DATA ACCESS ROUTINES

QQ

aQ Qo

IEEEEREREEE SR Program Start EEXXXXXXXE KKk XXX

open file ENOOOOO1l.W7AS

RESULT = OPENF('ENOOOOO1.W7AS, 3)

IF (RESULT(1:1) .EQ. '*') STOP

select diagnostic 'LASER’', module ’'ADC-Fast’

RESULT = SELECT ('LASER’, 'ADC-Fast’)

IF (RESULT(1:1) .EQ. '*') STOP

get desired parameters from unit ’'ADC-Fast’:

RESULT = GETPAR ('MOD ', ‘Data-Count’, DATCNT,
‘Channels’, CHAN,
‘Gain’, GAIN,
'Note’, NOTE)

IF (RESULT(1:1) .EQ. ‘*’') STOP

get the first 1000 datapoints:

RESULT = GETDAT (I2BUF, 1, 1000)
IF (RESULT(1:1) .EQ. '*') STOP

Now you can work with data and parameters

close flle

RESULT = CLOSEF()
END

Page 7-15

UDAS DATA ACCESS ROUTINES Page 7-16

7.4.2 Complex application

C
C Sample program for application of the UDAS
C data evaluating routines :
c
PROGRAM BSP
C Specification of the functions and result message
C e e e
CHARACTER*80 GETFIL, OPENF, CLOSEF,
1 SELECT, GETPAR, GETDAT
CHARACTER*80 RESULT
C File name, logical unit number, shotnumber,
C Diagnostioc and module names
C ___
CHARACTER*50 FNAME
INTEGER LUNIT, SHOTNR
CHARACTER*22 DIAGN, MODN
Cc Specifications for the parameters
C Factor_1l, Faotor_4, System and User
C @ e Lo e
INTEGER FACTA1(3), FACTA4(4)
CHARACTER*10 SYSPAR
CHARACTER*100 USERB
C Specifications for the parameters
C Frequency and Text
G A R e R e N e e e
REAL FREQU
CHARACTER*40 TEXT
C Specifications for the parameter Conversion
C Conversion 2.442E-3 4095 2048
(o R == S R A ey O SR T o TR e T Y
LOGICAL*1 CONVER(12)
C Note: for each REAL or INTEGER value
C 4 bytes storage will be needed
REAL CONV1
INTEGER CONV2, CONV3
C Superpositioning of the REAL and INTEGER values
C on the LOGICAL*1 buffer:
(o g e o e = oh . ank o Seeb e it e PN eI < X R e AR

EQUIVALENCE (CONVER(1),CONV1)

UDAS DATA ACCESS ROUTINES Page 7-17

aaQaa

Qaa

aaaaaaaQ

EQUIVALENCE (CONVER(5),CONV2)
EQUIVALENCE (CONVER(9),CONV3)
Note:

CONVER is superposed in such a way that the REAL
value can be accessed with CONV1, and the two
INTEGER values with CONVZ2 and CONVS3.

Specifications of parameter Factor_2 on module ADC-El:

Factor_2 afafaf 12 1.0el6 volt energie H"13 ende
LOGICAL*1 FACTE1(38)

REAL FREAL

INTEGER FINT1, “FINTIZ

CHARACTER AF*6, VOLT*4, ENER*7, ENDE*4

Note:

GETPAR ylelds the values of Factor_2 in the
following order:

first the REAL value in bytes 1-4,

then the two INTEGER values 1n bytes 5-8 and
9-12 respectively, and finally the 4 CHARACTER
values as of byte 13, each separated by a blank.

EQUIVALENCE (FACTE1(1), FREAL)
EQUIVALENCE (FACTE1(5), FINT1)
EQUIVALENCE (FACTE1(9), FINT2)
EQUIVALENCE (FACTE1(13),AF)

EQUIVALENCE (FACTE1(20),VOLT)
EQUIVALENCE (FACTE1(25),ENER)
EQUIVALENCE (FACTE1(33),ENDE)

Specification of the buffer for GETDAT

INTEGER*2 I2BUF(2560)
REAL REABUF(200)
CHARACTER*80 CHRBUF

INTEGER DATRET, DATEND

¥k ok kkokkkkkkxkx Progra’m Start ¥ %k Xk Xk %k Xk %k Xk %k Xk k Xk X X

LUNIT = 3

try to get current shotnumber by the data acquisistion

RESULT = GETFIL(FNAME, SHOTNR)
IF (RESULT(1l:1).NE.’' ') FNAME = ‘DNOOOOO1l.NEUTRALINJ'

UDAS DATA ACCESS ROUTINES Page 7-18

C open the diagnostic data file

RESULT = OPENF(FNAME, LUNIT)
TYPE*, RESULT

C select diagnostic Neutralinjeotion, Module ADC-Al

DIAGN = 'Neutralinjection’
MODN = ’‘ADC-Al’

RESULT = SELECT (DIAGN, MODN)
TYPE*, RESULT

Cc get diagnostic parameter "System"

RESULT = GETPAR('DIAG’, 'System’, SYSPAR)
IF (RESULT(1:1).NE.' ') TYPE*, RESULT
PRINT*, ’'System: ', SYSPAR

get module parameters "Conversion",
"Factor_4", and "Factor_l"

RESULT = GETPAR('MOD ',
‘Conve’ ,CONVER,
'Factor_4',FACTA4,
‘Factor_1',FACTAl)

IF (RESULT(1:1).NE.' ') TYPE*, RESULT

PRINT*, ’‘Conversion: ', CONV1l, CONV2, CONV3

QaaQ

R

C select module ADC-El in the same diagnostioc

RESULT = SELECT('Neutralinjection’, 'ADC-E1’)
IF (RESULT(1:1).NE.' ') TYPE*, RESULT

C get module parameter "Frequency" of ADC-El

RESULT = GETPAR('MOD ', 'Frequency’,FREQU)
IF (RESULT(1:1).NE.’ ') TYPE*, RESULT
PRINT*, '‘Frequency: ', FREQU

get module parameter "Factor_l" and "Factor_2"
of ADC-El

RESULT = GETPAR('MOD ',
1 ‘Factor_1',TEXT,
1 'Factor_2',FACTEl)
IF (RESULT(1:1).NE.' ') TYPE*, RESULT
PRINT?*, ‘Text: ', TEXT
WRITE(*, '(All,A6,1X,I2,1X,E10.2,1X,6A4,

1X,A7,1X,23,1X,A4) ')
‘Factor-2: ', AF, FINT1l, FREAL, VOLT,
ENER, FINTZ2, ENDE

aaa

Q-

C get data
C select Neutralinjeotion, ADC-El

UDAS DATA ACCESS ROUTINES Page 7-19
C expected data format INT2 causes an error
C e

RESULT = GETDAT(I2BUF,DATEND+1,2560,
« DATEND, DATRET, 'INT2')
IF (RESULT(1:1).NE.’ ‘) TYPE*, RESULT

C select new

RESULT = SELECT(DIAGN, 'ADC-Al’)
IF (RESULT(1:1).NE.’' ‘') TYPE*, RESULT

C loop to get all data of ADC-Al
c —-———————————_——_———_—_—-—-—.—-,—-.— ;- —_.— (—
DATEND = O
DO I=1,200
RESULT = GETDAT(I2BUF,DATEND+1,2560,
1 DATEND, DATRET, 'INT2')
IF (RESULT(1l:1).NE.’ ') TYPE*, RESULT
IF (RESULT(1:1).HE.’' ') 'GOTO 200
END DO
200 CONTINUE
C get some REAL data of ADC-C1l
C select ADC-C1l
c ___

RESULT = SELECT(DIAGN, 'ADC-Cl’)
IF (RESULT(1:1).NE.’' ‘) TYPE*, RESULT

c get data form first to 200th data item
C ___
RESULT = GETDAT(REABUF,1,200)
IF (RESULT(1:1).NE.' ‘') TXPE*, RESULT
PRINT*, 'Real Data of ADC-Cl: '
PRINT*, REABUF
[get CHARACTER data of ADC-D1
C ___
CHRBUF = ' '
RESULT = SELECT(DIAGN, 'ADC-D1’')
IF (RESULT(1:1).NE.' ') TYPE*, RESULT
RESULT = GETDAT(CHRBUF, 100,20)
IF (RESULT(1:1).NE.' ‘') TYPE*, RESULT
PRINT*, ’‘Character Data of ADC-D1: '
PRINT*, CHRBUF
C close file
C ___

RESULT = CLOSEF()
IF (RESULT(1:1).NE.’' ') TYPE*, RESULT

END

	IPP 2_288 Deckblatt
	IPP 2_288 Text

